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Reliability-Based Optimization of Uncertain Systems
in Structural Dynamics

Hector A. Jensen®*
FE Santa Maria University, 110-V, Valparaiso, Chile

The reliability-based optimization of uncertain linear structural systems subjected to stochastic excitation is
considered. Uncertain system parameters are modeled as random variables with prescribed joint probability den-
sity function. Second-order probabilistic descriptors are combined with approximate extreme response theories
to obtain conditional reliability estimates for the system. Approximations based on asymptotic expansions are
used to provide a computationally efficient estimate for the unconditional system reliability that accounts for the
uncertainties in the system parameters. A general solution strategy for the corresponding reliability-based op-
timization problem is presented. Implementation issues related to the evaluation of system response functions
and calculation of design points are addressed. The effects of uncertainty in the system parameters, as well
as the accuracy of reliability estimates on the optimal design, are investigated. It is shown that these two fac-
tors are important because they can change the optimal design significantly. A generic primary-secondary system
is presented to illustrate the performance and efficiency of the proposed implementation.

Nomenclature
{b} = vector of uncertain system parameters
C() = total cost function
[C] = damping matrix
Cq, Cp = damping coefficients of the absorber

and primary systems

E.() = expectationoperationin time domain
[G] = compatibility matrix
[H()] = Hessian matrix
J() = unconditional quantity
[K] = stiffness matrix
kq, k, = stiffnesses of the absorber and primary systems
[M] = mass matrix
Mg, N, = masses of the absorber and primary systems
{n()} = Gaussian white noise excitation vector
P() = probability density function
Pr(-), Pr(-) = failure probability and reliability function
{qg()} = state-space vector
ri(+) = systemresponse
S:, T;, U; = modal energies
s (+) = modulating time function
t = time variable
{fu()},{u(-)}, = displacement,velocity, and accelaration
{i()} response vectors
{x} = vector of design variables
i) = modal cross covariances
7 () = modal participation coefficient
Ki = thresholdlevel
Y = eigenvalue
vt() = expectedrate of up-crossing a threshold level
a,f , a}% ,0,; = second-orderstatistics
() = Gaussian distribution function
{x}i, {o}i = left and right eigenvectors
{x}pi, {®#}pi = position parts of the left and right eigenvectors

Introduction

PTIMIZATION via general nonlinear mathematical program-
ming techniqueshas been widely acceptedas a viable method-
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ologyforengineeringdesign.Itis clearthat, whenastructureisbeing
designed, the environmental loads that the built structure will expe-
rience in its lifetime are highly uncertain. The uncertain load time
history needed in the dynamic analysis of a structure subjected to
environmental loads such as aerodynamic turbulence, wind, water
wave excitation, and earthquakeis an uncertain value function, and
itis best modeled by a stochastic process."? Likewise, response pre-
dictions are made during design based on structural models, whose
parameters are uncertain because the properties that will be ex-
hibited by the structure when completed are not known precisely.
These uncertainties result from the numerous assumptions made
when modeling the geometry, the boundary conditions, constitutive
behavior of the materials involved, etc. Probabilistic methods pro-
vide the means for incorporatingsystem uncertaintiesin the analysis
by describingthe uncertaintiesas random variableswith a prescribed
joint probability density function. Uncertaintiesin both loading and
structural characteristics can adversely affect the reliability of the
structure. Therefore, it is necessary to consider their effects explic-
itly during the optimization process to achieve a balance between
cost and safety for the optimal design.>*
Inreliability-basedstructuraloptimization,the total expectedcost
related to the structure, including the initial, maintenance, and fail-
ure costs, is usuallyused as an objectivefunction. The constraintsare
reliability requirements with respect to the possible failure modes
of the structure. If the structural characteristicsare known, the con-
ditional reliability estimates can be calculated using well-known
techniques from random vibration theory. System reliabilities that
account for the uncertainties in the system parameters are given by
the total probability theorem as particular multidimensional inte-
grals over the space of uncertain parameters. Exact analytical so-
lutions for these unconditional multidimensionalintegrals can only
be found for a very limited number of simple systems. For more
realistic systems, simulation techniques such as Monte Carlo and
importance sampling can be used to provide accurate results for
evaluating unconditional system reliabilities? Other methods that
have been developedto providecomputationaltools for approximat-
ing reliabilities of uncertain systems subjected to stochastic loads
are the first-order reliability method® and second-order reliability
method (SORM).” These methods have been tested for a variety of
structural problems, including simple linear and nonlinear systems
and primary-secondary systems. Additional methods thathave been
developed for computing unconditional system reliabilities include
the perturbationmethod® and the asymptotic method.”!° The pertur-
bation method is the least expensive method from a computational
point of view, but it works well only for a limited number of cases.
The asymptotic method, on the other hand, is a technique based
on the Laplace’s method for asymptotic approximationof integrals.
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One important feature of this technique is the use of simple ana-
lytical formulas for reliability estimates, which makes the method
simpler than other existing SORM.

Reliability-based optimization problems can be characterized as
two-level optimizationproblems. Level 1 is the overall optimization
in the design variables, and level 2 is the failure and reliability es-
timates. For realistic systems, these estimates completely dominate
the total calculationcost. Therefore, the number of system response
calculations, including reliability estimates, should be as small as
possible. In this context, one promising technique is the asymptotic
approximation method because of its simplicity and expediency.
In this case, the sublevel optimization problem becomes an uncon-
strained optimization problem.'" Approximation concepts'>!3 are
used to develop an efficient numerical implementation for the so-
lution of the sublevel optimization problem. In the approximation
conceptsmethod, a sequenceof approximate optimizationproblems
is generated, and they are solved using conventional optimization
techniques.

First, the formulation of the reliability-based optimization prob-
lem is presented. Next, reliability estimates in terms of the asymp-
totic method are reviewed. Solution strategiesfor an efficientnumer-
ical implementation of the methodology are then discussed. Finally,
a test problem is considered to illustrate the ideas set forth.

Problem Formulation

Let the vectors {x} (x;,i =1,...,n) and {b} (b;,i=1,...,m)
represent the vector of design variables and uncertain system pa-
rameters, respectively. The uncertain system parameters are mod-
eled using a prescribed joint probability density function P ({b}).
This function indicates the relative plausibility of the possible val-
ues of the uncertain parameters {b} € Q, with 2 being a subset of
R™.Inreliability-basedstructuraloptimization,there will usually be
code specifications with requirementsfor the reliability of the struc-
tural components and/or the total system. In this formulation, the
constraints are related to single failure modes. Then, the structural
synthesis problem can be written as a two-level nonlinear mathe-
matical programming problem of the form

n(ﬁ)ll C({x}

subject to the design constraints
P (lx}) < P}, i=1.....K

G;({x} =0, j=1,....,M, x}eA (1)
where C({-}) is the total cost function, including initial construction
costs and expected failure costs, P, ({}) is the failure probability
function for failure mode number i, P;i is a user specified level of
failure, G; is a deterministic constraintrelated to general design re-
quirements, and A is the set that containsthe side constraints for the
vector of design variables {x}. The top-level optimization problem
is the overall optimizationin the design variables, whereas the sub-
level problem correspondsto the failure probability estimates. Note
that the two levels separate, although the two types of variables
are nested in the problem. For example, when failure probability
calculations are performed, it is for fixed values x;,i =1, ...,n.
The total cost function C ({x}) and the failure probability functions
Pr,({x}),i=1,..., K, represent unconditional quantities for the
design {x}. That is, they account for the uncertainties in the system
parameters as well as the uncertaintiesin the loads. These quantities
can be written in terms of conditional quantities by using the total
probability theorem as

C{xh = / C({x} [{bh P ({b}) d{b}
Q

Pﬂ({x}):/Pﬂ({x}l{b})P({b})d{b}7 i=1...,.K (2
Q

where C({x} | {b}) is the conditional total cost and Pr, ({x} | {b}),
i=1,..., K are the conditional failure probabilities for the design
{x}, given the vector of system parameters {b}.

Approximations for Reliability Estimates

The unconditionalobjective function as well as the unconditional
constraint functions defined in Eq. (2) are multidimensional proba-
bility integrals that rarely, if ever, can be integrated analytically. In
the proposed implementation, asymptotic approximations of multi-
dimensional integrals are used to derive estimates for the uncondi-
tional quantities.For the sake of completeness, the basicideas of this
technique are reviewed briefly.”'° The asymptotic approximationis
based on the expansion of the logarithm of the integrand of the con-
ditional quantities about the point that correspondsto the maximum
of the integrand. The value of {b} that maximizes the integrand {b*}
is called a design point. Let J ({x}) denote an unconditionalquantity
of the form

J({xh :/ J{x} [{ph) P({b}) d{b} 3
Q

where J ({x} | {b}) is a conditional quantity for the design {x} given
the vector of system parameters {b}. It is clear that the total cost
function and the failure probability functions of problem (1) have
the representationgiven in Eq. (3). When a second-orderexpansion
of b(J({x}|{b}) P({b}) about {b*} is considered, and when it is
noted that its derivatives are zero at {b*}, it is found that

J({x}) =/eXp[fn(J({x}I{b})P({b}))] d{b}
Q
= J{x}{o*H P{L*H
1
x / CXP[—E({b} — "D TH{b"H1{b} — {b*})}
Q

x exp[R({b})]d{b} )

where [H ({b*})] is the Hessian matrix of — a[J ({x} | {b}) P({D]]
evaluated at the design point {6*} and R({b}) is the expansion er-
ror. In Eq. (4) it is assumed that {6*} occurs inside the region .
Finally, applying Laplace’s method of asymptotic expansion to the
integral in Eq. (4) and noting that R({b*}) =0 gives an asymptotic
approximation for J ({x}) as'*

J{x} b HP{L D
MIERTD

where |[[H ({b*})]| is the determinant of the Hessian matrix. The
approximation given in Eq. (5) is asymptotically correct, that is,
the sharper the peak of the integrand is about its maximum value,
the more accurate the value of the approximationis expected to be.
In fact, it can be shown that the errorin the approximationconverges
to zero as the smallesteigenvalueof [H ({b*})] tends to infinity.'® In
the case of multipledesignpoints {b*};,i =1, ..., L, theasymptotic
approximationis given by summing the contributionfor each design
point, that is,

J({xp) ~ @m)"?

5

L
J(xh =Y Jidah

i=1

where J;({x}),i =1, ..., L, is the asymptotic contribution to the
unconditional quantity from the design point {*}; and is given by

J{x} b)) PR}
VIH ({b*})]]

Based on the asymptoticresults given, Eq. (6) is taken as an approx-
imation for the unconditional quantity J({x}). Numerical results
have shown that, in general, the asymptotic method gives accept-
able and reasonable quantitative results for the type of probability
integralsencounteredin this formulation.'” It is emphasized that the
unconditional quantity J ({x}) can be estimated by any other avail-
able technique. For example, simulationtechniquescan improve the
value of the multidimensional integrals to any desirable degree of
accuracy at the expenses of more computation effort.

Ji({xh ~ @) ©)
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Application

In this study, attention is directed toward problems in which the
stochastic excitation is a Gaussian white noise process with zero
mean. Because of its mathematical simplicity, this type of stochastic
processis often used as an approximationto a greatnumber of phys-
ical phenomena. The probability that design conditionsare satisfied
during projected lifetime 7 provides a useful measure of system
performance or reliability. In problem (1), the reliability constraints
are related to single failure modes, where failure mode number i
is assumed to occur when a system response 7, (f, {x} | {b}) reaches
some critical level «; for the first time. In this context, r; (¢, {x} | {b})
is a conditionalresponse quantity for the design {x} given the vector
of system parameters {b}. The probabilitythatr; (t, {x} | {b}) has not
reached the level x; before time T can be obtained using available
results from random vibration theory.! These results are based on
the expected rate of up-crossing and down-crossing through lev-
els «; and —«;, respectively. The expected rate of up-crossing a
given level «;, v (¢, {x}|{b}), is given in terms of the second-
order statistics a,f =E,[r}(, {x} [ {BD], a}% = E,[r2(t, {x} | {b})],
and o5, = E[r,(t, {x} | {b})F; (¢, {x} | {b})] as’

. o, (1—s)7 —i2
v P = 2n o, xp 202(1 —5?)

SKiO —i} SK;
t—T o o |®| T )
emror L2051 | o, (1 -s?)2

where E,(-) is the mathematical expectation with respect to un-
certainty in the time domain; s = 0,,, /0,0, is the coefficient of
correlation between the response r; (¢, {x} | {b}) and its time deriva-
tive 7; (¢, {x} | {b}); P () is the Gaussian distribution function; o,
and oy, are the standard deviation of the response r;(z, {x} | {b})
and its time derivative, respectively; and o,,;; is the cross correla-
tion between r; (¢, {x} | {b}) and 7; (¢, {x} | {b}). For a high threshold
level «;, it can be assumed that the events of crossing such a level
occur independently according to a Poisson process with mean rate
vt (z, {x} | {b}), in which case the conditional failure probability can
be approximated by!

Pry (0} (b)) = 1 = prob| max 1,1, () (6] <
[0.7T]

T
~1-— exp(—Z/ vi(r, {x}| {b}) dr) (8)
0

where prob[-] denotes the probability that the expression in paren-
thesis is true.

Modal-Based Solution

The solution of the nonlinear mathematical programming prob-
lem defined in Eq. (1) requires the evaluation of conditional and un-
conditional quantities. The conditional quantities C ({x} | {b}) and
Pr,({x}{b}),i=1,..., K, require the evaluation of second-order
statistics of systemresponse functions. These second-orderstatistics
can be written in terms of the solution of a general underdampedlin-
ear system.'® The derivation of the basic equationsare repeated here
for the continuity of the formulation. The equation of motion of an
[-degree-of-freedom linear structural system subjected to external
forces can be cast in the form

(ML)} + [CHa®)} + [K{u@®)} = [Gl{n()} C))

where {u(t)}, {s(¢)}, and {ii(¢)} are the displacement, velocity, and
accelerationresponsevectorsof dimension/, respectively;[M],[C],
and [ K] are the mass, damping, and stiffness matrices of dimension
I x I;[G]isamatrix of dimension! x [ relating the force to the de-
grees of freedom of the system; and {n(¢)} is a zero-mean Gaussian
white noise excitation vector of dimension/;. In general, the matri-
ces [M], [C], [K], and [G] depend on the vector of design variables
{x} and uncertain system parameters {b}. Therefore, the system re-
sponses are also functions of {x} and {b}. The solution of Eq. (9) is
carried out by standard modal analysis. The equation is recast into

the first-order 2/ state-space form, and the solutionis representedas
a linear combination of complex mode shapes of the form

20
a0} =Y (gl (0

i=1

where {g (#)} = ({u ()} {u(?)}") is the state vector; n; (1), i =1, ...,
2l are the modal participation coefficients; and {¢;},i=1,...,2l
are the complex right eigenvectors corresponding to the 2/ state-
space equation. The eigenvalues of the 2/ state-space equation of

motion, A;, i =1, ..., 2l, can be written as'’
LS S2_4T,U, 00
i = 2T,

where T, S;, and U; are the modal energiesdefined as 7; ={x }’pi [M]
(@}, Ui = {X}[pi[K]{¢}pi’ and §; = {X}[pi[c]{¢}pi and where {¢}
and {x},; are the position parts (the last / components) of the right
and left eigenvectors of the 2/ state-space equation of motion, re-
spectively. For underdamped systems, the modes appearin complex
conjugate pairs, and so the modal participation coefficients can be
arranged to appear in complex conjugate pairs. These coefficients
satisfy a first-order differential equation that can be written in terms

of the modal energies as!!”

) _ )G} o
m(f)—)»im(f)—m, i=1,...,21 (1D

Response Statistics

Denote by r (¢, {x} | {b}) = {B({x} | {b})}'{u(?)} a conditional re-
sponse quantity of interest given as a linear combination of the
components of the displacement response vector. The dependence
of the vector {B(-)} on the vector of design variables and uncertain
system parameters arises when, for example, the response quan-
tity is a stress or force member and some of the cross-sectional
properties (dimensions or mechanical properties) of the member
are design variables or uncertain system parameters. The state vec-
tor {q ()} = ({z(¢)} {u(t)}') is a zero-mean Gaussian process due to
the linearity of the system, and it is fully described by its covariance
matrix. The second-order statistics of the response can be written in
terms of modal cross covariances. For example, the variance of the
response process (¢, {x} | {b}) is given by

A2
o} = eri.i(t)

where the quantities I';;(t) = E,[y;(t)y;(t)] are modal cross co-
variances, with y; (t) = {8} {¢},in:(t). To derive the equation for
the modal cross covariances I';; (), it is assumed, without loss
of generality, that the force components n;(t),i=1,...,[;, of
the vector {n(#)} are independent with autocorrelation functions
E[n;(t)n;(t)]=6@ —1)s;(t)s;(r),i=1,...,ls, where §(-) is the
delta function and s;(-) is a deterministic modulating time func-
tion. In this case, the cross-covariance function I';; (¢) satisfies the
Lyapunov equation that can be written as'-'®

{BY (@} pi{x},[G]

d
=TI = +2)T;0) = T +5)

” [SM)]

610y le), 1)
27T+ S))
and where [S(7)] is a diagonal matrix with components S;; () =
sl.z(t). Note that for simple modulating functions s;(¢) such as
step functions, boxcar type functions, and exponential functions, a
closed-formsolutioncan be obtained for the modal cross-covariance
quantities. The second-order statistics o7 and o,; can be computed
in a similar manner. More general stochastic excitations such as
processes modeled as the output of a linear system (filter) with a
Gaussian white noise input can also be treated in this formulation.
In that case, an augmented system consisting of the original sys-

tem and the input filter subjected to a white noise process has to be
considered.

, i,j=1,...,2] (12)
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Design Points
The evaluation of the unconditional quantities C({x}) and
Pr,({x}),i=1, ..., K, involves the computation of design points.
The design points are found as the solution of the sublevel uncon-
strained optimization problem

max J{x} H{EH P({bY), {beQ (13)

where J ({x} | {b}) is a conditional quantity such as the conditional
total cost and the conditional failure probabilities involved in the
optimization problem (1). The main contribution to the uncondi-
tional quantity J ({x}) comes from the neighborhood of the design
points. When multiple design points exist, it is necessary to find
all local maxima. If one design point is neglected, its contribution
to the value of the unconditional quantity may be significant, and,
therefore, the estimate can be inaccurate.” In this formulation, a
stochastic multistart technique is used to search for multiple design
points.'® The algorithm generates random initial points for the op-
timization process. Each starting point produces a local maximum
that is computed by a standard local optimization scheme. Different
stopping rules can be considered for the multistart technique. For
example, the procedure stops when the number of different maxima
that have been detected is equal to a user estimate of the total num-
ber of maxima. Another possibility is to estimate the relative size
of the region of attraction in the set of uncertain system parameters
Q2 that the algorithm has not detected. In this context, a region of
attractionis a subsetof €2 such thatif the optimization process starts
at any point in the set, the optimum solutionis unique and lies in 2.
The search of new local maxima is stopped as soon as the posterior
expectedrelative size of the detectedregion exceeds a user specified
number.'

In general, the search of design points occupies a considerable
portion of the total computational effort during the optimization
process. To evaluate the conditional quantities involved in the op-
timization problem (13), it is necessary to obtain the second-order
statistics of system response functions. It is clear from Eq. (12)
that the second-order statistics of the system responses depend on
the modal energies 7;, S;, and U;,i =1, ..., 2l, and the position
parts of the right and left eigenvectors {¢}; and {x};,i =1, ..., 2l,
respectively. At the same time, these quantities are implicit non-
linear functions of the vector of uncertain system parameters {b}.
Therefore, the search of the design pointsimplies the repeated evalu-
ation of the system responses (structural analyses). For real systems,
the evaluation of structural responses can be prohibitively expen-
sive from the numerical point of view. To avoid this computational
burden, approximation concepts are used for the evaluation of the
second-order statistics.

Numerical Implementation

The fundamental ideas used in the approximation concepts
method'>!>? are extendedfor the efficientevaluationof the second-
order statistics of the system responses. In this approach, the com-
plex modal energies 7;, S;, and U;, i =1,...,2l, are chosen as
intermediate response quantities, and they are approximated by us-
ing a convex linearization®! with respect to the uncertain system
parameters {b}. For example, modal energy T; is approximated as

- aT; ({bo)) oT; ({bo}) Do
T, =T+ ;Tbj(b./ —bjo) + ;Tbjb_j(b'i —bjo)

(14)

means summation

where T;o = T;({bo}), {bo} is a point in , ZH)

over the variables for which

3()({bo})
0b;

is positive,and Y (, contains the remaining variables. An attractive
property of this linearization is that it yields the most conservative
approximation among all of the possible combination of direct/re-
ciprocal variables?' A similar approximationis used for the modal

energies S; and U;. The partial derivatives used in the approxima-
tions are evaluated assuming that the position parts of the eigen-
vectors are invariantin the neighborhood of {b,}. For example, the
partial derivative of the modal energy T; at {b,}, with respectto b;,
is computed as

aT;
ab,

. 0[M]
={X}p,-Tbi

{bo}

{¢}pi
}

{bo

The same assumptionis used for the evaluation of the partial deriva-
tives 0U;/9b; and 9S;/db;, which are required for the approxi-
mations of the modal energies S; and U;. This assumption makes
sensitivity calculation (derivatives) very inexpensivefrom a compu-
tational point of view. When the earlier approximationsin Eq. (12)
are introduced, an explicitapproximationfor the modal cross covari-
ancesI';;(?), i, j=1,...2l, interms of {b} can be obtained. These
approximations are then used to construct approximations for the
second-orderstatisticsof the systemresponser; (¢, {x} | {b}), thatis,
7.6, ,and 6, . Finally, the approximate second-orderstatistics of
theresponser; (¢, {x} | {b}) areused in combinationwith Egs. (7) and
(8) to estimate the conditional quantities. With these approximation
concepts used, the optimization problem (13) can be replaced by
the solution of a sequence of explicit approximate suboptimization
problems 22! At each stage of the iterative optimization process,
the approximate subproblem,correspondingto problem (13), is con-
structed in terms of approximate modal energies. These quantities
are approximated about the current design point {by} as in Eq. (14).
Note thatonly one exact structuralanalysisis requiredat each subop-
timization problem. The invariant assumption of the mode shapes
limits the relative change (move limits) in the optimization vari-
ables of the suboptimization problems, where the approximations
are expected to yield reasonable results. However, numerical vali-
dations have shown that move limits up to 50% can be used without
significant loss of accuracy in the final results.'”"? Of course, the
variability of the mode shapes can be considered explicitly in the
approximations to increase the size of the move limits. A much
faster convergence of the sequence of the explicit suboptimization
problems is obtained in this case, but at the expense of more com-
putational effort in the overall design process. Thus, the invariant
assumption of the eigenvectors in the neighborhood of the current
design point, where the approximations are constructed, is widely
used in the context of structural optimization problems.

The explicit approximate problems as well as the top-level op-
timization problem, which corresponds to the overall optimization
in the design variables {x}, are nonlinear optimization problems. In
general nonlinearoptimization problems, itis widely acknowledged
that optimizationalgorithmsusing first-orderinformationshould be
considered the most efficient algorithms. As a consequence of this,
afirst-order scheme is used in this formulation to solve the top-level
as well as the approximate sublevel optimization problems.

Example Problem
The example problem consists of a generic primary-secondary
system shown in Fig. 1. This type of system is chosen as a test
problem because of the richness in its dynamic characteristics and
the wide range of applications that this model has in engineering

. Secondary System
Primary System (Absorber System)
A A
. ™
Xp(t)
2k | Xa(1)

m m
p ——
el Ca

ENANPNINNAN NN

-
[

>
White Noise

Base Excitation

Fig.1 Primary-secondary system.
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vibration. Also, the behavior of this simple structure is representa-
tive of the behavior of more general multi-degree-of-freedan sys-
tems. In this application, the primary system represents a general
structure, modeled as a single-degree-of-freedlom system, whereas
the secondary system serves as an absorber system consisting of
a mass-damper-spring combination added to the primary system
to protect it from vibrating. Absorbers are often used in a number
of systems, including aircraftengines, building structures, transmis-
sionlines, and generalrotating systems.?? The parametersdescribing
the structural system are specified as follows: mass of the primary
system m ,, stiffness property of the primary system k,, structural
damping ratio of the primary system &, (§, =c,/2/(k,m ,)), mass
of the absorberm,,, stiffness of the connectionbetween the absorber
and the primary system k,, and damping ratio of the absorber &,
(&, =c¢4/2+/(k,m,)). The masses are assumed to be fixed, and the
mass ratio is taken to be u=m,/m,=0.01. The combined sys-
tem is subjected to a base acceleration that is modeled as a white
noise process of duration equal to 10 times the natural period of
the primary system in the absence of the absorber, that is, when
= 0. The system governing the evolution of the response has two
complex conjugate modes. On the other hand, the equation for the
evolution of the modal cross covariances has two real components
and four components that appear in complex conjugate pairs.

The objectiveof the example problemis to find the optimal design
of the absorber that minimizes the total cost, including the initial
construction cost and the expected cost of failure. At the same time,
the systemis subjectedto areliabilityconstraintthatis givenin terms
of the displacement response of the primary system relative to its
base. The designvariablesare the absorberparametersk, and&,. The
uncertain system parameters are chosen to be the stiffness property
of the primary system k, and the damping ratio of the primary
system &,, with most probable values k, and &, respectively. The
uncertain parameters are parameterized and written as k, =k,b,
and £, = él,bz, where b, and b, are independent and lognormally
distributed with the most probable value equal to 1.0 and standard
deviation o and oy, respectively. The most probable value of the
period of the primary system is chosen to be 0.4 s, and £, =0.01.
For illustration purposes, the initial construction cost is defined as
a linear function of the damping ratio of the absorber and given by
C.(&,) =10° x 5.05&, + 505.00. The cost of failure C, for known
primary system parameters kK, and &,, is the product between a
cost, taken as 103, and the probability of failure of the absorber.
Failure is assumed to occur when the restoring force of the spring
connectingthe absorber to the primary system reaches some critical
level for the first time. Thus, the response quantity of interest in this
caseis r(t) =k,[x,(t) — x, ()], where x, () is the displacement of
the absorber and x,(f) the displacement of the primary system.
The threshold level value is assumed to be four times the standard
deviation of the restoring force response of the initial design. The
reliability constraintis givenin terms of the failure probability of the
primary system Pr. In this case, failure is assumed to occur when
the displacementof the primary system relative to the base exceeds
some critical level for the first time. The threshold level is chosen
to be four times the standard deviation of the relative displacement
response of the primary system in the absence of the absorber. The
specified level of failure is taken to be equal to P; =2 x 1072

To gain insight into the effect of system uncertainties on the ob-
jective function and reliability constraint, the cost of failure Cr and
the failure probability Pr are evaluated as functions of the uncer-
tain system parameters b, and b,. These functions are shown in
Figs. 2 and 3, respectively, and they are evaluated at the initial de-
sign K ginitiay @and fa(inmaL ). The following values onr the initial design
are assumed: K, nia) /k, = 6.4 x 1073, where k,, is, as before, the
most probable value of the stiffness property of the primary sys-
tem, and &, a1y = 1 %. It is found that the failure probability at the
most probable values of the uncertain parameters (b, = b, =1.0)
is smaller than P} and equal to P =2.95 x 1073, Therefore, the
initial design is feasible in this situation. However, it will be shown
that the feasibility of the initial design can be altered because of
the effect of the uncertainties in the system parameters. It is also
observed from Figs. 2 and 3 that, when the stiffness of the primary
system is about 50% of its most probable value (b, =0.5), that is,

Table1 Expected failure probability estimates
(reliability constraint), initial design

Case Exact Perturbation ~ Asymptotic
1 0.29 x 1072 N S—

2 1.69x 1072 157x1072  1.60x 1072
3 576x 1072  2.58x 1072 5.69x 1072
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Fig.2 Cost of failure at the initial design as a function of the uncertain
system parameters b; and b.
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Fig. 3 Failure probability of the primary system at the initial design
as a function of the uncertain system parameters b, and b,.

k, :o.szép, the failure probability is very small. In this situation,
the motion of the primary system is taken by the motion of the ab-
sorber, and, therefore, this device offers an effective protection to
the primary system by reducing its vibration magnitude. This is es-
pecially true if the structural damping ratio &, is small. At the same
time, it is seen that the cost of failure of the absorber is maximized
under this condition. This is reasonable because the motion of the
vibrationabsorberis large in this situation. Of course, the preceding
comments are only valid under the condition k, =0.5 k, because
the uncertainty in the system parameters can very easily destroy the
effectiveness of the absorber operation.

Table 1 shows the value of the expected failure probability (uncon-
ditional) at the initial design obtained by the importance sampling
technique, second-order perturbation method, and asymptotic ap-
proximation. For discussion purposes, the value obtained by the im-
portance sampling technique with a large number of samples (2000)
is taken as the exact value. The following cases, namely, 1, 2, and 3,
are considered.In case 1 the stiffness property and the dampingratio
of the primary systemare taken at their most probable values, that s,
k, =k, and &, =£,. In the other two cases, the level of uncertainty
of &, is fixed at o, = 0.25 (standard deviation), and two levels of un-
certainty of k,, namely, oy = 0.25 (case 2), and 0, = 0.40 (case 3),
are considered. These levels of uncertainty represent a variability
of the natural frequency of the primary system of approximately 10
and 20% for cases 2 and 3, respectively. The asymptotic method
performs very well in terms of predicting the value of the expected
failure probability of the primary system for cases 2 and 3. Contrar-
ily, the second-orderperturbationmethod gives poor results. In fact,
for high levels of uncertainty, it underestimatestheresults by a factor
of more than two. This result is expected because the second-order
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perturbation method is based on the expansion of the failure prob-
ability function Pr (b, b,) into a second-order Taylor series about
the most probable values of b, and b,. The local expansion is not
able to capture the nonlinearity of the failure probability functionin
the space of uncertain system parameters 2 (see Fig. 3). It is also
clear that the failure probability estimate based on the most probable
primary system (case 1) is highly underestimated. Thus, neglecting
the uncertainties in the system parameters will give unreliable re-
sults for the failure reliability estimate. This, in turn, will produce
an important impact on the optimal design.

It is found that for cases 2 and 3 there exist two design points
for the failure probability function P ({b}) P ({b}) and one design
point for the failure cost function Cr ({b}) P ({b}). Figure 4 shows
the integrand Pr({b}) P ({b}) for case 3 at the initial design. In this
case, the contribution of the first design point to the failure proba-
bility is 14%, whereas the importance of the second design point is
86%. The relative contributionreflects the importance of the design
points in the reliability computation, and it is controlled by the cur-
rentdesignin the optimizationprocess. To illustrate this point, Fig. 5
shows the integrand function Pr({b}) P ({b}) at the optimal design.
The importance of the first design point increases to 37%, whereas
the second design point decreases to 63%. Figures 6 and 7 show
the integrand function C ({b}) P ({b}) for case 3 at the initial and
final design, respectively. The asymptotic estimate of the expected
failure cost at the initial design is equal to 0.34 x 10°. This value
is then reduced more than 40 times at the final design. This reduc-
tion shows the effectivenessof the optimizationprocess in reducing
the initial expected failure cost of the design. A global optimiza-
tion strategy is used in this implementation to calculate the design
points [problem (13)]. The algorithm uses a stochastic multistart
technique together with version 4.0 of DOT,?® which s a first-order
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Fig.4 Failure probability function of the primary system at the initial
design as a function of the uncertain system parameters b; and b,.
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Fig. 5 Failure probability function of the primary system at the final
design as a function of the uncertain system parameters b; and b,.

Table 2 Final designs (exact)

Design variable Case 1 Case 2 Case 3
ka / ka initial) 0.10 0.83 0.79

Sa /Sa(initia]) 0.10 2.08 5.47
Total cost 0.110x 1072 0.136x 10°  0.279x 10°

Table 3 Final designs (asymptotic approximations)

Design variable Case 1 Case 2 Case 3
ka / ka initial) 0.10 0.83 0.79

Sa /Sa(initia]) 0.10 2.07 5.10
Total cost 0.110x 1072 0.133x 10°  0.264x 10°
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Fig. 6 Failure cost function at the initial design as a function of the
uncertain system parameters b; and b.
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Fig. 7 Failure cost function at the final design as a function of the
uncertain system parameters b; and b,.

numerical optimizer. For all initial sample points generated by the
multistart technique, convergence to a local maximum is obtained
in fewer than 15 cycles, when approximationconcepts are used. On
the other hand, the number of analyses required for convergence is
more than 200 if the sublevel optimization problem (13) is solved
using exact system analyses. Clearly, the use of approximationcon-
cepts allows a considerablereduction in the number of analyses re-
quired to obtain the design points. Reductionin computational time
is even more substantial for the design of complex systems because
the computational burden of each structural analysis is very large.
Numerical results have shown that the computational requirements
can by reduced by a factor of more than 20 when approximation
concepts are used. Thus, the feasibility of the proposed approach to
complex system is apparent.

Tables 2 and 3 show the final designs for cases 1, 2, and 3 ob-
tained by using exactand asymptotic estimates for the unconditional
quantities involved in the optimization problem, respectively.
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The side constraints for the design variables are set as follows:
0.1= ka/ka(initial) <4.0and 0.1 < & /sa(initial) <10.0, where ka(inilial)
and &,niiar) are, as before, the values of the design variables at the
initial design. Note that the optimal design correspondingto case 1,
that is, when the most probable values of the primary system pa-
rameters are considered, is very different from those of cases 2 and
3. In the conditional case (case 1), the entire design space is feasi-
ble, and the minimum cost is obtained at the lower bound values of
the design variables. The failure probability at the optimal design
Py is such that Pr/ P} =0.33, and, therefore, the optimal solution
is not active in this case. This result is illustrated in Fig. 8, where
the constraint function (expected failure probability of the primary
system) is shown as a function of the design variables. When uncer-
tainties are considered, the optimal solution is active and the design
variables lie inside the design space as shown in Fig. 9. In Fig. 9,
the objective function (initial constructioncost plus expected cost of
failure of the absorber system) is shown as a function of the design
variables for case 3. From Fig. 9 and Tables 2 and 3, it is clear that
the uncertainties are important in the optimization process because
they can change the optimal design dramatically. In fact, the total
cost of the optimal design in the conditional case is 107 times less
than that of the optimal design obtained when uncertainties in the
primary system parameters are considered. This resultindicates that
the optimal solution can be highly sensitive to variation in the sys-

tem parameters. Note that the shape of the integrands of the failure
probability integrals changes during the optimization process. The

numerical results shown in Tables 2 and 3 indicate that the asymp-

totic approximationis able to capture the quantitativebehaviorofthe
probability integrals during the entire optimization process for the

level of uncertainties considered in this study. For higher levels of
uncertainty (standard deviation more than 50%), the accuracy of the

34 Amlqeqmd amnye; pejoadxe

Fig.8 Expected failure probability of the primary system as a function
of the design variables (case 1).
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Fig.9 Expected total cost as a function of the design variables (case 3).

Table 4 Constraint violations Pp/P;

Conditional Unconditional
Case optimal design optimal design
2 3.57 1.01
3 6.81 1.05

asymptotic approximations deteriorates,'* and the final design can
be affected significantly. In this case, the accuracy of the estimates
can be improved to any desired, by using, for example, importance
sampling techniques. As mentioned, the main difference in this sit-
uation is in the number of structural analyses required during the
optimization process.

The importance of considering the effects of uncertainty in the
system parameters during the optimizationprocess can also be illus-
trated from a constraint violations point of view. Table 4 shows the
constraint violations at the conditional optimal design (case 1), and
unconditional optimal design obtained by the asymptotic approx-
imation method. In Table 4, the exact value of the unconditional
failure probability Pr at different optimal designs is computed by
the importance sampling technique (exact value). For example, if
the failure probability is evaluated at the conditional optimal de-
sign, a factor of more than six is obtainedin case 3. Thus, the failure
probability of the conditional optimal design is more than six times
the value of the failure probability constraint P;;, when the uncer-
tainty in the primary system parametersis considered. It is observed
that the constraintviolations at the optimal solution obtained by the
proposed implementation are small, even for the case with large
uncertainties (case 3). Finally, for completenessthe behavior of the
proposed optimal dynamic absorberis compared with absorbers ob-
tained by conventionaldeterministicapproaches ?? For example, the
optimal tuned mass-damper corresponding to case 3 of the exam-
ple problem has a probability of failure equal to 6.75 x 1072 and a
final cost equal to 0.508 x 10°, when the uncertainty in the primary
system parameters is considered. It is clear that this design is in-
feasible and much more expensive than the design obtained by the
proposed formulation. Therefore, it is recommended that the proce-
dure described in this paper be used instead of deterministic tuning
approaches whenever there are uncertainties in the primary system
properties. These results also indicate, once again, the importance
of considering the effect of uncertainty explicitly during the design

process.

Conclusions

A general solution strategy for the reliability-based optimization
of uncertain linear structural systems subjected to stochastic exci-
tation has been presented. An asymptotic approximation method
is used to derive estimates for unconditional reliabilities in a nu-
merically efficient way. The combination of the asymptotic method
with approximation concepts allow a considerablereduction in the
number of exact system analysis required to obtain reliability esti-
mates. Numerical results have shown that uncertainty in the model
parameters may cause significant changes in the optimal design of
systems subjected to stochastic loads. In these situations, the errors
or uncertaintiesin the specification of the system properties should
be properly accounted for during the optimization process. Also,
the accuracy of reliability estimates plays an important role in the
optimization problem. Inaccurate reliability estimates may produce
infeasible optimal designs, and, therefore, the optimization process
may lead to misleading conclusions regarding the feasibility and
safety of the optimized system. Finally, as the simple yet illustrative
example demonstrates, the proposed methodology provides a gen-
eral framework in which the optimal design of structures with uncer-
tain propertiessubjectedto stochasticexcitationscan be determined.
The implementation of the methodology to more complex struc-
tural systems is immediate. Thus, the proposed implementation is
expectedto be usefulin the optimal design of real structural systems.
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