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Reliability-Based Optimization of Uncertain Systems
in Structural Dynamics

Hector A. Jensen¤

F. Santa Maria University, 110-V, Valparaiso, Chile

The reliability-based optimization of uncertain linear structural systems subjected to stochastic excitation is
considered. Uncertain system parameters are modeled as random variables with prescribed joint probability den-
sity function. Second-order probabilistic descriptors are combined with approximate extreme response theories
to obtain conditional reliability estimates for the system. Approximations based on asymptotic expansions are
used to provide a computationally ef� cient estimate for the unconditional system reliability that accounts for the
uncertainties in the system parameters. A general solution strategy for the corresponding reliability-based op-
timization problem is presented. Implementation issues related to the evaluation of system response functions
and calculation of design points are addressed. The effects of uncertainty in the system parameters, as well
as the accuracy of reliability estimates on the optimal design, are investigated. It is shown that these two fac-
tors are important because they can change the optimal design signi� cantly. A generic primary–secondary system
is presented to illustrate the performance and ef� ciency of the proposed implementation.

Nomenclature
fbg = vector of uncertain system parameters
C.¢/ = total cost function
[C] = damping matrix
ca ; cp = damping coef� cients of the absorber

and primary systems
Et .¢/ = expectation operation in time domain
[G] = compatibility matrix
[H .¢/] = Hessian matrix
J .¢/ = unconditionalquantity
[K ] = stiffness matrix
ka; kp = stiffnesses of the absorber and primary systems
[M ] = mass matrix
ma ; m p = masses of the absorber and primary systems
fn.¢/g = Gaussian white noise excitation vector
P.¢/ = probability density function
PF .¢/; PR.¢/ = failure probability and reliability function
fq.¢/g = state-space vector
ri .¢/ = system response
Si ; Ti ; Ui = modal energies
si .¢/ = modulating time function
t = time variable
fu.¢/g; f Pu.¢/g; = displacement, velocity, and accelaration
f Ru.¢/g response vectors
fxg = vector of design variables
0i j .¢/ = modal cross covariances
´i .¢/ = modal participationcoef� cient
·i = threshold level
¸i = eigenvalue
ºC.¢/ = expected rate of up-crossing a threshold level
¾ 2

ri
; ¾ 2

Pri
; ¾ri Pri = second-orderstatistics

8.¢/ = Gaussian distribution function
fÂ gi ; fÁgi = left and right eigenvectors
fÂ gpi ; fÁgpi = position parts of the left and right eigenvectors

Introduction

O PTIMIZATION via generalnonlinearmathematicalprogram-
ming techniqueshas beenwidely acceptedas a viablemethod-
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ologyforengineeringdesign.It is clear that,whenastructureisbeing
designed, the environmental loads that the built structure will expe-
rience in its lifetime are highly uncertain. The uncertain load time
history needed in the dynamic analysis of a structure subjected to
environmental loads such as aerodynamic turbulence, wind, water
wave excitation, and earthquake is an uncertain value function, and
it is best modeled by a stochasticprocess.1;2 Likewise, responsepre-
dictions are made during design based on structural models, whose
parameters are uncertain because the properties that will be ex-
hibited by the structure when completed are not known precisely.
These uncertainties result from the numerous assumptions made
when modeling the geometry, the boundary conditions, constitutive
behavior of the materials involved, etc. Probabilistic methods pro-
vide the means for incorporatingsystem uncertaintiesin the analysis
bydescribingtheuncertaintiesas randomvariableswith a prescribed
joint probabilitydensity function.Uncertainties in both loadingand
structural characteristics can adversely affect the reliability of the
structure. Therefore, it is necessary to consider their effects explic-
itly during the optimization process to achieve a balance between
cost and safety for the optimal design.3;4

In reliability-basedstructuraloptimization,the totalexpectedcost
related to the structure, including the initial, maintenance, and fail-
ure costs, is usuallyusedas anobjectivefunction.The constraintsare
reliability requirements with respect to the possible failure modes
of the structure. If the structural characteristicsare known, the con-
ditional reliability estimates can be calculated using well-known
techniques from random vibration theory. System reliabilities that
account for the uncertainties in the system parameters are given by
the total probability theorem as particular multidimensional inte-
grals over the space of uncertain parameters. Exact analytical so-
lutions for these unconditionalmultidimensional integrals can only
be found for a very limited number of simple systems. For more
realistic systems, simulation techniques such as Monte Carlo and
importance sampling can be used to provide accurate results for
evaluating unconditional system reliabilities.5 Other methods that
havebeendevelopedto providecomputationaltools for approximat-
ing reliabilities of uncertain systems subjected to stochastic loads
are the � rst-order reliability method6 and second-order reliability
method (SORM).7 These methods have been tested for a variety of
structural problems, including simple linear and nonlinear systems
and primary–secondarysystems.Additionalmethods thathavebeen
developed for computing unconditional system reliabilities include
the perturbationmethod8 and the asymptoticmethod.9;10 The pertur-
bation method is the least expensive method from a computational
point of view, but it works well only for a limited number of cases.
The asymptotic method, on the other hand, is a technique based
on the Laplace’s method for asymptotic approximationof integrals.
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One important feature of this technique is the use of simple ana-
lytical formulas for reliability estimates, which makes the method
simpler than other existing SORM.

Reliability-based optimization problems can be characterizedas
two-leveloptimizationproblems.Level 1 is the overall optimization
in the design variables, and level 2 is the failure and reliability es-
timates. For realistic systems, these estimates completely dominate
the total calculationcost. Therefore, the number of system response
calculations, including reliability estimates, should be as small as
possible. In this context, one promising technique is the asymptotic
approximation method because of its simplicity and expediency.
In this case, the sublevel optimization problem becomes an uncon-
strained optimization problem.11 Approximation concepts12;13 are
used to develop an ef� cient numerical implementation for the so-
lution of the sublevel optimization problem. In the approximation
conceptsmethod, a sequenceof approximateoptimizationproblems
is generated, and they are solved using conventional optimization
techniques.

First, the formulation of the reliability-basedoptimization prob-
lem is presented. Next, reliability estimates in terms of the asymp-
totic methodare reviewed.Solutionstrategiesfor an ef� cientnumer-
ical implementationof the methodologyare then discussed.Finally,
a test problem is considered to illustrate the ideas set forth.

Problem Formulation
Let the vectors fxg (xi ; i D 1; : : : ; n) and fbg (bi ; i D 1; : : : ; m)

represent the vector of design variables and uncertain system pa-
rameters, respectively. The uncertain system parameters are mod-
eled using a prescribed joint probability density function P.fbg/.
This function indicates the relative plausibility of the possible val-
ues of the uncertain parameters fbg 2 Ä, with Ä being a subset of
Rm . In reliability-basedstructuraloptimization,therewill usuallybe
code speci� cations with requirementsfor the reliabilityof the struc-
tural components and/or the total system. In this formulation, the
constraints are related to single failure modes. Then, the structural
synthesis problem can be written as a two-level nonlinear mathe-
matical programming problem of the form

min
fxg

C.fxg/

subject to the design constraints

PFi .fxg/ · P¤
Fi

; i D 1; : : : ; K

G j .fxg/ · 0; j D 1; : : : ; M; fxg 2 1 (1)

where C.f¢g/ is the total cost function, including initial construction
costs and expected failure costs, PFi .f¢g/ is the failure probability
function for failure mode number i , P¤

Fi
is a user speci� ed level of

failure, G j is a deterministicconstraint related to general design re-
quirements, and 1 is the set that containsthe side constraintsfor the
vector of design variables fxg. The top-level optimization problem
is the overall optimization in the design variables, whereas the sub-
level problem correspondsto the failure probabilityestimates.Note
that the two levels separate, although the two types of variables
are nested in the problem. For example, when failure probability
calculations are performed, it is for � xed values xi ; i D 1; : : : ; n.
The total cost function C.fxg/ and the failure probability functions
PFi .fxg/; i D 1; : : : ; K , represent unconditional quantities for the
design fxg. That is, they account for the uncertainties in the system
parametersas well as the uncertaintiesin the loads. These quantities
can be written in terms of conditional quantities by using the total
probability theorem as

C.fxg/ D
Z

Ä

C.fxg j fbg/P.fbg/ dfbg

PFi .fxg/ D
Z

Ä

PFi .fxg j fbg/P.fbg/ dfbg; i D 1; : : : ; K (2)

where C.fxg j fbg/ is the conditional total cost and PFi .fxg j fbg/;
i D 1; : : : ; K are the conditional failure probabilities for the design
fxg, given the vector of system parameters fbg.

Approximations for Reliability Estimates
The unconditionalobjective functionas well as the unconditional

constraint functions de� ned in Eq. (2) are multidimensionalproba-
bility integrals that rarely, if ever, can be integrated analytically. In
the proposed implementation, asymptotic approximationsof multi-
dimensional integrals are used to derive estimates for the uncondi-
tionalquantities.For the sake of completeness,thebasic ideasof this
techniqueare reviewed brie� y.9;10 The asymptotic approximation is
based on the expansionof the logarithmof the integrandof the con-
ditional quantitiesabout the point that correspondsto the maximum
of the integrand.The value of fbg that maximizes the integrand fb¤g
is called a design point.Let J .fxg/ denote an unconditionalquantity
of the form

J .fxg/ D
Z

Ä

J .fxg j fbg/P.fbg/ dfbg (3)

where J .fxg j fbg/ is a conditionalquantity for the design fxg given
the vector of system parameters fbg. It is clear that the total cost
function and the failure probability functions of problem (1) have
the representationgiven in Eq. (3). When a second-orderexpansion
of .J .fxg j fbg/P.fbg/ about fb¤g is considered, and when it is
noted that its derivativesare zero at fb¤g, it is found that

J .fxg/ D
Z

Ä

exp[ .J .fxg j fbg/P.fbg//] dfbg

D J .fxg j fb¤g/P.fb¤g/

£
Z

Ä

exp

µ
¡1

2
.fbg ¡ fb¤g/t [H .fb¤g/].fbg ¡ fb¤g/

¶

£ exp[R.fbg/] dfbg (4)

where [H .fb¤g/] is the Hessian matrix of ¡ [J .fxg j fbg/P.fbg/]
evaluated at the design point fb¤g and R.fbg/ is the expansion er-
ror. In Eq. (4) it is assumed that fb¤g occurs inside the region Ä.
Finally, applying Laplace’s method of asymptotic expansion to the
integral in Eq. (4) and noting that R.fb¤g/ D 0 gives an asymptotic
approximation for J .fxg/ as14

J .fxg/ ¼ .2¼/m=2 J .fxg j fb¤g/P.fb¤g/
p

j[H .fb¤g/]j
(5)

where j[H .fb¤g/]j is the determinant of the Hessian matrix. The
approximation given in Eq. (5) is asymptotically correct, that is,
the sharper the peak of the integrand is about its maximum value,
the more accurate the value of the approximation is expected to be.
In fact, it can be shown that the error in the approximationconverges
to zero as the smallest eigenvalueof [H .fb¤g/] tends to in� nity.15 In
thecaseofmultipledesignpointsfb¤gi ; i D 1; : : : ; L, the asymptotic
approximationis givenby summing the contributionfor each design
point, that is,

J .fxg/ D
LX

i D 1

Ji .fxg/

where Ji .fxg/; i D 1; : : : ; L , is the asymptotic contribution to the
unconditionalquantity from the design point fb¤gi and is given by

Ji .fxg/ ¼ .2¼/m=2 J .fxg j fb¤gi /P.fb¤gi /p
j[H .fb¤gi /]j

(6)

Based on the asymptotic resultsgiven,Eq. (6) is taken as an approx-
imation for the unconditional quantity J .fxg/. Numerical results
have shown that, in general, the asymptotic method gives accept-
able and reasonable quantitative results for the type of probability
integralsencounteredin this formulation.10 It is emphasized that the
unconditionalquantity J .fxg/ can be estimated by any other avail-
able technique.For example, simulationtechniquescan improve the
value of the multidimensional integrals to any desirable degree of
accuracy at the expenses of more computation effort.
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Application
In this study, attention is directed toward problems in which the

stochastic excitation is a Gaussian white noise process with zero
mean. Becauseof its mathematicalsimplicity, this type of stochastic
process is oftenused as an approximationto a great numberof phys-
ical phenomena.The probability that design conditionsare satis� ed
during projected lifetime T provides a useful measure of system
performanceor reliability. In problem (1), the reliability constraints
are related to single failure modes, where failure mode number i
is assumed to occur when a system response ri .t; fxg j fbg/ reaches
some critical level ·i for the � rst time. In this context,ri .t; fxg j fbg/
is a conditionalresponsequantity for the design fxg given the vector
of system parametersfbg. The probabilitythat ri .t; fxg j fbg/ has not
reached the level ·i before time T can be obtained using available
results from random vibration theory.1 These results are based on
the expected rate of up-crossing and down-crossing through lev-
els ·i and ¡·i , respectively. The expected rate of up-crossing a
given level · j , ºC.t ; fxg j fbg/, is given in terms of the second-
order statistics ¾ 2

ri
D Et [r 2

i .t ; fxg j fbg/], ¾ 2
Pri

D Et [Pr 2
i .t; fxg j fbg/],

and ¾ri Pri D Et [ri .t ; fxg j fbg/Pri .t; fxg j fbg/] as2

ºC.t; fxg j fbg/ D
¾Pri .1 ¡ s2/

1
2

2¼¾ri

exp

µ
¡· 2

i

2¾ 2
ri

.1 ¡ s2/

¶

C
s·i ¾Pri

.2¼/
1
2 ¾ 2

ri

exp

µ
¡· 2

i

2¾ 2
ri

¶
8

"
s·i

¾ri .1 ¡ s2/
1
2

#
(7)

where Et .¢/ is the mathematical expectation with respect to un-
certainty in the time domain; s D ¾ri Pri =¾ri ¾Pri is the coef� cient of
correlation between the response ri .t ; fxg j fbg/ and its time deriva-
tive Pri .t ; fxg j fbg/; 8.¢/ is the Gaussian distribution function; ¾ri

and ¾Pri are the standard deviation of the response ri .t; fxg j fbg/
and its time derivative, respectively; and ¾ri Pri is the cross correla-
tion between ri .t; fxg j fbg/ and Pri .t; fxg j fbg/. For a high threshold
level ·i , it can be assumed that the events of crossing such a level
occur independentlyaccording to a Poisson process with mean rate
ºC.t; fxg j fbg/, in which case the conditionalfailure probabilitycan
be approximated by1

PFi .fxg j fbg/ D 1 ¡ prob
h

max
[0;T ]

jri .t ; fxg j fbg/j · ·i

i

¼ 1 ¡ exp

³
¡2

Z T

0

ºC.¿; fxg j fbg/ d¿

´
(8)

where prob[¢] denotes the probability that the expression in paren-
thesis is true.

Modal-Based Solution
The solution of the nonlinear mathematical programming prob-

lem de� ned in Eq. (1) requires the evaluationof conditionaland un-
conditional quantities. The conditional quantities C.fxg j fbg/ and
PFi .fxg j fbg/; i D 1; : : : ; K , require the evaluation of second-order
statisticsof systemresponsefunctions.These second-orderstatistics
can be written in terms of the solutionof a general underdampedlin-
ear system.16 The derivationof the basic equationsare repeatedhere
for the continuity of the formulation. The equation of motion of an
l -degree-of-freedom linear structural system subjected to external
forces can be cast in the form

[M]f Ru.t/g C [C]f Pu.t/g C [K ]fu.t/g D [G]fn.t/g (9)

where fu.t/g, f Pu.t/g, and f Ru.t/g are the displacement, velocity, and
accelerationresponsevectorsof dimensionl, respectively;[M ], [C],
and [K ] are the mass, damping, and stiffnessmatrices of dimension
l £ l ; [G] is a matrix of dimension l £ lG relating the force to the de-
grees of freedom of the system; and fn.t/g is a zero-mean Gaussian
white noise excitationvector of dimension lG . In general, the matri-
ces [M], [C], [K ], and [G] dependon the vector of design variables
fxg and uncertain system parameters fbg. Therefore, the system re-
sponses are also functions of fxg and fbg. The solution of Eq. (9) is
carried out by standard modal analysis. The equation is recast into

the � rst-order2l state-space form, and the solution is representedas
a linear combination of complex mode shapes of the form

fq.t/g D
2lX

i D 1

fÁgi ´i .t/

where fq.t/gt D hf Pu.t/gt fu.t/gt i is the state vector; ´i .t/; i D 1; : : : ;
2l are the modal participation coef� cients; and fÁi g; i D 1; : : : ; 2l
are the complex right eigenvectors corresponding to the 2l state-
space equation. The eigenvalues of the 2l state-space equation of
motion, ¸i ; i D 1; : : : ; 2l, can be written as17

¸i D
¡Si §

p
S2

i ¡ 4Ti Ui

2Ti

(10)

where Ti , Si , and Ui are the modal energiesde� ned as Ti DfÂ gt
pi [M]

fÁgpi , Ui D fÂ gt
pi [K ]fÁgpi , and Si D fÂ gt

pi [C]fÁgpi and where fÁgpi

and fÂgpi are the position parts (the last l components) of the right
and left eigenvectors of the 2l state-space equation of motion, re-
spectively.For underdampedsystems, the modes appear in complex
conjugate pairs, and so the modal participation coef� cients can be
arranged to appear in complex conjugate pairs. These coef� cients
satisfy a � rst-orderdifferentialequation that can be written in terms
of the modal energies as1;17

Ṕi .t/ ¡ ¸i ´i .t/ D
fÂ gt

pi [G]fn.t/g
.2¸i Ti C Si /

; i D 1; : : : ; 2l (11)

Response Statistics
Denote by r .t ; fxg j fbg/ D f¯.fxg j fbg/gt fu.t/g a conditional re-

sponse quantity of interest given as a linear combination of the
components of the displacement response vector. The dependence
of the vector f¯.¢/g on the vector of design variables and uncertain
system parameters arises when, for example, the response quan-
tity is a stress or force member and some of the cross-sectional
properties (dimensions or mechanical properties) of the member
are design variables or uncertain system parameters. The state vec-
tor fq.t/gt D hf Pu.t/gt fu.t/gt i is a zero-meanGaussianprocessdue to
the linearityof the system, and it is fully describedby its covariance
matrix. The second-orderstatisticsof the responsecan be written in
terms of modal cross covariances.For example, the variance of the
response process r.t; fxg j fbg/ is given by

¾ 2
r D

2lX

i D 1

2lX

j D 1

0i j .t/

where the quantities 0i j .t/ D Et [°i .t/° j .t/] are modal cross co-
variances, with °i .t/ D f¯gt fÁgpi ´i .t/. To derive the equation for
the modal cross covariances 0i j .t/, it is assumed, without loss
of generality, that the force components ni .t/; i D 1; : : : ; lG , of
the vector fn.t/g are independent with autocorrelation functions
Et [ni .t/ni .¿/] D ±.t ¡ ¿/si .t/si .¿ /; i D 1; : : : ; lG , where ±.¢/ is the
delta function and si .¢/ is a deterministic modulating time func-
tion. In this case, the cross-covariance function 0i j .t/ satis� es the
Lyapunov equation that can be written as1;16

d

dt
0i j .t/ ¡ .¸i C ¸ j /0i j .t/ D

f¯gt fÁgpi fÂ gt
pi [G]

.2¸i Ti C Si /
[S.t/]

£
[G]t fÂ gp j fÁgt

p j f¯g
.2¸ j T j C S j /

; i; j D 1; : : : ; 2l (12)

and where [S.t/] is a diagonal matrix with components Sii .t/ D
s2

i .t/. Note that for simple modulating functions si .t/ such as
step functions, boxcar type functions, and exponential functions, a
closed-formsolutioncan be obtainedfor the modalcross-covariance
quantities. The second-order statistics ¾ 2

Pr and ¾r Pr can be computed
in a similar manner. More general stochastic excitations such as
processes modeled as the output of a linear system (� lter) with a
Gaussian white noise input can also be treated in this formulation.
In that case, an augmented system consisting of the original sys-
tem and the input � lter subjected to a white noise process has to be
considered.
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Design Points
The evaluation of the unconditional quantities C.fxg/ and

PFi .fxg/; i D 1; : : : ; K , involves the computation of design points.
The design points are found as the solution of the sublevel uncon-
strained optimization problem

max
fbg

J .fxg j fbg/P.fbg/; fbg 2 Ä (13)

where J .fxg j fbg/ is a conditional quantity such as the conditional
total cost and the conditional failure probabilities involved in the
optimization problem (1). The main contribution to the uncondi-
tional quantity J .fxg/ comes from the neighborhood of the design
points. When multiple design points exist, it is necessary to � nd
all local maxima. If one design point is neglected, its contribution
to the value of the unconditional quantity may be signi� cant, and,
therefore, the estimate can be inaccurate.15 In this formulation, a
stochasticmultistart technique is used to search for multiple design
points.18 The algorithm generates random initial points for the op-
timization process. Each starting point produces a local maximum
that is computedby a standard local optimization scheme. Different
stopping rules can be considered for the multistart technique. For
example, the procedure stops when the number of differentmaxima
that have been detected is equal to a user estimate of the total num-
ber of maxima. Another possibility is to estimate the relative size
of the region of attraction in the set of uncertain system parameters
Ä that the algorithm has not detected. In this context, a region of
attraction is a subsetof Ä such that if the optimizationprocess starts
at any point in the set, the optimum solution is unique and lies in Ä.
The search of new local maxima is stopped as soon as the posterior
expectedrelative size of the detectedregionexceeds a user speci� ed
number.19

In general, the search of design points occupies a considerable
portion of the total computational effort during the optimization
process. To evaluate the conditional quantities involved in the op-
timization problem (13), it is necessary to obtain the second-order
statistics of system response functions. It is clear from Eq. (12)
that the second-order statistics of the system responses depend on
the modal energies Ti ; Si , and Ui ; i D 1; : : : ; 2l, and the position
parts of the right and left eigenvectors fÁgi and fÂ gi ; i D 1; : : : ; 2l,
respectively. At the same time, these quantities are implicit non-
linear functions of the vector of uncertain system parameters fbg.
Therefore,the searchof thedesignpointsimplies the repeatedevalu-
ation of the system responses(structuralanalyses). For real systems,
the evaluation of structural responses can be prohibitively expen-
sive from the numerical point of view. To avoid this computational
burden, approximation concepts are used for the evaluation of the
second-order statistics.

Numerical Implementation
The fundamental ideas used in the approximation concepts

method12;13;20 are extendedfor the ef� cientevaluationof the second-
order statistics of the system responses. In this approach, the com-
plex modal energies Ti , Si , and Ui , i D 1; : : : ; 2l, are chosen as
intermediate response quantities, and they are approximatedby us-
ing a convex linearization21 with respect to the uncertain system
parameters fbg. For example, modal energy Ti is approximated as

QTi D Ti0 C
X

.C/

@Ti .fb0g/
@b j

.b j ¡ b j0/ C
X

.¡/

@Ti .fb0g/
@b j

b j0

b j
.b j ¡ b j0/

(14)

where Ti0 D Ti .fb0g/, fb0g is a point in Ä,
P

.C/
means summation

over the variables for which

@.¢/.fb0g/
@b j

is positive,and
P

.¡/
containsthe remainingvariables.An attractive

property of this linearization is that it yields the most conservative
approximation among all of the possible combination of direct/re-
ciprocal variables.21 A similar approximation is used for the modal

energies Si and Ui . The partial derivatives used in the approxima-
tions are evaluated assuming that the position parts of the eigen-
vectors are invariant in the neighborhoodof fb0g. For example, the
partial derivative of the modal energy Ti at fb0g, with respect to b j ,
is computed as

@Ti

@b j

­­­­
fb0 g

D fÂgt
pi

@[M]
@b j

­­­­
fb0g

fÁgpi

The same assumption is used for the evaluationof the partialderiva-
tives @Ui=@b j and @Si =@b j , which are required for the approxi-
mations of the modal energies Si and Ui . This assumption makes
sensitivitycalculation(derivatives) very inexpensivefrom a compu-
tational point of view. When the earlier approximations in Eq. (12)
are introduced,an explicitapproximationfor themodalcrosscovari-
ances 0i j .t/; i; j D 1; : : : 2l, in terms of fbg can be obtained. These
approximations are then used to construct approximations for the
second-orderstatisticsof the system responseri .t; fxg j fbg/, that is,
Q¾ 2

ri
, Q¾ 2

Pri
, and Q¾ri Pri . Finally, the approximatesecond-orderstatisticsof

the responseri .t; fxg j fbg/ areused in combinationwith Eqs. (7) and
(8) to estimate the conditionalquantities.With these approximation
concepts used, the optimization problem (13) can be replaced by
the solution of a sequence of explicit approximate suboptimization
problems.20;21 At each stage of the iterative optimization process,
the approximatesubproblem,correspondingto problem(13), is con-
structed in terms of approximate modal energies. These quantities
are approximatedabout the current design point fb0g as in Eq. (14).
Note thatonlyoneexactstructuralanalysisis requiredat eachsubop-
timization problem. The invariant assumption of the mode shapes
limits the relative change (move limits) in the optimization vari-
ables of the suboptimization problems, where the approximations
are expected to yield reasonable results. However, numerical vali-
dationshave shown that move limits up to 50% can be used without
signi� cant loss of accuracy in the � nal results.17;20 Of course, the
variability of the mode shapes can be considered explicitly in the
approximations to increase the size of the move limits. A much
faster convergence of the sequence of the explicit suboptimization
problems is obtained in this case, but at the expense of more com-
putational effort in the overall design process. Thus, the invariant
assumption of the eigenvectors in the neighborhood of the current
design point, where the approximations are constructed, is widely
used in the context of structural optimization problems.

The explicit approximate problems as well as the top-level op-
timization problem, which corresponds to the overall optimization
in the design variables fxg, are nonlinear optimizationproblems. In
generalnonlinearoptimizationproblems, it is widely acknowledged
that optimizationalgorithmsusing � rst-order informationshould be
considered the most ef� cient algorithms. As a consequenceof this,
a � rst-order scheme is used in this formulation to solve the top-level
as well as the approximate sublevel optimization problems.

Example Problem
The example problem consists of a generic primary–secondary

system shown in Fig. 1. This type of system is chosen as a test
problem because of the richness in its dynamic characteristicsand
the wide range of applications that this model has in engineering

Fig. 1 Primary–secondary system.
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vibration. Also, the behavior of this simple structure is representa-
tive of the behavior of more general multi-degree-of-freedom sys-
tems. In this application, the primary system represents a general
structure, modeled as a single-degree-of-freedom system, whereas
the secondary system serves as an absorber system consisting of
a mass–damper–spring combination added to the primary system
to protect it from vibrating. Absorbers are often used in a number
of systems, includingaircraftengines,buildingstructures,transmis-
sion lines,andgeneralrotatingsystems.22 The parametersdescribing
the structural system are speci� ed as follows: mass of the primary
system m p , stiffness property of the primary system k p , structural
damping ratio of the primary system »p (»p D cp=2

p
.kpm p/), mass

of the absorberma , stiffnessof the connectionbetween the absorber
and the primary system ka , and damping ratio of the absorber »a

(»a D ca=2
p

.kama/). The masses are assumed to be � xed, and the
mass ratio is taken to be ¹ D ma=m p D 0:01. The combined sys-
tem is subjected to a base acceleration that is modeled as a white
noise process of duration equal to 10 times the natural period of
the primary system in the absence of the absorber, that is, when
¹ D 0. The system governing the evolution of the response has two
complex conjugate modes. On the other hand, the equation for the
evolution of the modal cross covariances has two real components
and four components that appear in complex conjugate pairs.

The objectiveof the exampleproblemis to � nd the optimaldesign
of the absorber that minimizes the total cost, including the initial
constructioncost and the expectedcost of failure. At the same time,
the systemis subjectedto a reliabilityconstraintthat is given in terms
of the displacement response of the primary system relative to its
base.The designvariablesare theabsorberparameterska and»a .The
uncertain system parameters are chosen to be the stiffness property
of the primary system kp and the damping ratio of the primary
system »p , with most probable values Okp and O»p , respectively. The
uncertain parameters are parameterized and written as kp D Okpb1

and »p D O»pb2 , where b1 and b2 are independent and lognormally
distributed with the most probable value equal to 1.0 and standard
deviation ¾1 and ¾2 , respectively. The most probable value of the
period of the primary system is chosen to be 0.4 s, and O»p D 0:01.
For illustration purposes, the initial construction cost is de� ned as
a linear function of the damping ratio of the absorber and given by
Cc.»a/ D 105 £ 5:05»a C 505:00. The cost of failure CF , for known
primary system parameters kp and »p , is the product between a
cost, taken as 105, and the probability of failure of the absorber.
Failure is assumed to occur when the restoring force of the spring
connectingthe absorber to the primary system reaches some critical
level for the � rst time. Thus, the responsequantity of interest in this
case is r.t/ D ka[xa.t/ ¡ x p.t/], where xa.t/ is the displacement of
the absorber and xp.t/ the displacement of the primary system.
The threshold level value is assumed to be four times the standard
deviation of the restoring force response of the initial design. The
reliabilityconstraintis given in terms of the failureprobabilityof the
primary system PF . In this case, failure is assumed to occur when
the displacementof the primary system relative to the base exceeds
some critical level for the � rst time. The threshold level is chosen
to be four times the standard deviation of the relative displacement
response of the primary system in the absence of the absorber. The
speci� ed level of failure is taken to be equal to P¤

F D 2 £ 10¡2 .
To gain insight into the effect of system uncertainties on the ob-

jective function and reliability constraint, the cost of failure CF and
the failure probability PF are evaluated as functions of the uncer-
tain system parameters b1 and b2 . These functions are shown in
Figs. 2 and 3, respectively, and they are evaluated at the initial de-
sign ka.initial/ and »a.initial/. The following values for the initial design
are assumed: ka.initial/=Okp D 6:4 £ 10¡3 , where Okp is, as before, the
most probable value of the stiffness property of the primary sys-
tem, and »a.initial/ D 1%. It is found that the failure probability at the
most probable values of the uncertain parameters (b1 D b2 D 1:0)
is smaller than P¤

F and equal to PF D 2:95£ 10¡3. Therefore, the
initial design is feasible in this situation. However, it will be shown
that the feasibility of the initial design can be altered because of
the effect of the uncertainties in the system parameters. It is also
observed from Figs. 2 and 3 that, when the stiffness of the primary
system is about 50% of its most probable value (b1 D 0:5), that is,

Table 1 Expected failure probability estimates
(reliability constraint), initial design

Case Exact Perturbation Asymptotic

1 0.29£ 10¡2 —— ——
2 1.69£ 10¡2 1.57£ 10¡2 1.60£ 10¡2

3 5.76£ 10¡2 2:58 £ 10¡2 5.69£ 10¡2

Fig. 2 Cost of failure at the initial design as a function of the uncertain
system parameters b1 and b2.

Fig. 3 Failure probability of the primary system at the initial design
as a function of the uncertain system parameters b1 and b2 .

kp D 0:5 Okp , the failure probability is very small. In this situation,
the motion of the primary system is taken by the motion of the ab-
sorber, and, therefore, this device offers an effective protection to
the primary system by reducing its vibration magnitude. This is es-
pecially true if the structural damping ratio »p is small. At the same
time, it is seen that the cost of failure of the absorber is maximized
under this condition. This is reasonable because the motion of the
vibrationabsorberis large in this situation.Of course, the preceding
comments are only valid under the condition kp D 0:5 Okp because
the uncertainty in the system parameters can very easily destroy the
effectivenessof the absorber operation.

Table1 shows thevalueof theexpectedfailureprobability(uncon-
ditional) at the initial design obtained by the importance sampling
technique, second-order perturbation method, and asymptotic ap-
proximation.For discussionpurposes, the value obtainedby the im-
portancesampling techniquewith a largenumberof samples (2000)
is taken as the exact value. The following cases, namely, 1, 2, and 3,
are considered.In case 1 the stiffnesspropertyand the dampingratio
of the primary systemare takenat their most probablevalues, that is,
kp D Okp and »p D O»p . In the other two cases, the level of uncertainty
of »p is � xed at ¾2 D 0:25 (standarddeviation), and two levels of un-
certainty of kp , namely, ¾1 D 0:25 (case 2), and ¾2 D 0:40 (case 3),
are considered. These levels of uncertainty represent a variability
of the natural frequencyof the primary system of approximately10
and 20% for cases 2 and 3, respectively. The asymptotic method
performs very well in terms of predicting the value of the expected
failure probabilityof the primary system for cases 2 and 3. Contrar-
ily, the second-orderperturbationmethod gives poor results. In fact,
for high levelsof uncertainty,it underestimatesthe resultsby a factor
of more than two. This result is expected because the second-order
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perturbation method is based on the expansion of the failure prob-
ability function PF .b1; b2/ into a second-order Taylor series about
the most probable values of b1 and b2 . The local expansion is not
able to capture the nonlinearityof the failure probabilityfunction in
the space of uncertain system parameters Ä (see Fig. 3). It is also
clear that the failureprobabilityestimatebasedon the most probable
primary system (case 1) is highly underestimated.Thus, neglecting
the uncertainties in the system parameters will give unreliable re-
sults for the failure reliability estimate. This, in turn, will produce
an important impact on the optimal design.

It is found that for cases 2 and 3 there exist two design points
for the failure probability function PF .fbg/P.fbg/ and one design
point for the failure cost function CF .fbg/P.fbg/. Figure 4 shows
the integrand PF .fbg/P.fbg/ for case 3 at the initial design. In this
case, the contribution of the � rst design point to the failure proba-
bility is 14%, whereas the importance of the second design point is
86%. The relative contributionre� ects the importanceof the design
points in the reliability computation, and it is controlled by the cur-
rent design in theoptimizationprocess.To illustratethis point,Fig. 5
shows the integrand function PF .fbg/P.fbg/ at the optimal design.
The importance of the � rst design point increases to 37%, whereas
the second design point decreases to 63%. Figures 6 and 7 show
the integrand function CF .fbg/P.fbg/ for case 3 at the initial and
� nal design, respectively.The asymptotic estimate of the expected
failure cost at the initial design is equal to 0:34 £ 105 . This value
is then reduced more than 40 times at the � nal design. This reduc-
tion shows the effectivenessof the optimizationprocess in reducing
the initial expected failure cost of the design. A global optimiza-
tion strategy is used in this implementation to calculate the design
points [problem (13)]. The algorithm uses a stochastic multistart
technique together with version 4.0 of DOT,23 which is a � rst-order

Fig. 4 Failure probability function of the primary system at the initial
design as a function of the uncertain system parameters b1 and b2 .

Fig. 5 Failure probability function of the primary system at the � nal
design as a function of the uncertain system parameters b1 and b2 .

Table 2 Final designs (exact)

Design variable Case 1 Case 2 Case 3

ka=ka.initial/ 0.10 0.83 0.79
»a=»a.initial/ 0.10 2.08 5.47
Total cost 0.110£ 10¡2 0.136£ 105 0.279£ 105

Table 3 Final designs (asymptotic approximations)

Design variable Case 1 Case 2 Case 3

ka=ka.initial/ 0.10 0.83 0.79
»a=»a.initial/ 0.10 2.07 5.10
Total cost 0.110£ 10¡2 0.133£ 105 0.264£ 105

Fig. 6 Failure cost function at the initial design as a function of the
uncertain system parameters b1 and b2.

Fig. 7 Failure cost function at the � nal design as a function of the
uncertain system parameters b1 and b2.

numerical optimizer. For all initial sample points generated by the
multistart technique, convergence to a local maximum is obtained
in fewer than 15 cycles, when approximationconceptsare used. On
the other hand, the number of analyses required for convergence is
more than 200 if the sublevel optimization problem (13) is solved
using exact system analyses.Clearly, the use of approximationcon-
cepts allows a considerablereduction in the number of analyses re-
quired to obtain the design points. Reduction in computationaltime
is even more substantial for the design of complex systems because
the computational burden of each structural analysis is very large.
Numerical results have shown that the computational requirements
can by reduced by a factor of more than 20 when approximation
concepts are used. Thus, the feasibility of the proposed approach to
complex system is apparent.

Tables 2 and 3 show the � nal designs for cases 1, 2, and 3 ob-
tainedby usingexactand asymptoticestimates for the unconditional
quantities involved in the optimization problem, respectively.
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The side constraints for the design variables are set as follows:
0:1 · ka=ka.initial/ · 4:0 and 0:1 · »a=»a.initial/ · 10:0, where ka.initial/

and »a.initial/ are, as before, the values of the design variables at the
initial design. Note that the optimal design correspondingto case 1,
that is, when the most probable values of the primary system pa-
rameters are considered, is very different from those of cases 2 and
3. In the conditional case (case 1), the entire design space is feasi-
ble, and the minimum cost is obtained at the lower bound values of
the design variables. The failure probability at the optimal design
PF is such that PF=P¤

F D 0:33, and, therefore, the optimal solution
is not active in this case. This result is illustrated in Fig. 8, where
the constraint function (expected failure probability of the primary
system) is shown as a function of the design variables.When uncer-
tainties are considered,the optimal solution is active and the design
variables lie inside the design space as shown in Fig. 9. In Fig. 9,
the objectivefunction(initial constructioncost plus expectedcost of
failure of the absorber system) is shown as a function of the design
variables for case 3. From Fig. 9 and Tables 2 and 3, it is clear that
the uncertainties are important in the optimization process because
they can change the optimal design dramatically. In fact, the total
cost of the optimal design in the conditional case is 107 times less
than that of the optimal design obtained when uncertainties in the
primary system parametersare considered.This result indicates that
the optimal solution can be highly sensitive to variation in the sys-
tem parameters. Note that the shape of the integrands of the failure
probability integrals changes during the optimization process. The
numerical results shown in Tables 2 and 3 indicate that the asymp-
totic approximationis able to capture thequantitativebehaviorof the
probability integrals during the entire optimization process for the
level of uncertainties considered in this study. For higher levels of
uncertainty(standarddeviationmore than 50%), the accuracyof the

Fig. 8 Expected failureprobabilityof the primary system as a function
of the design variables (case 1).

Fig. 9 Expected total cost as a function of the design variables (case 3).

Table 4 Constraint violations PF /P ¤
F

Conditional Unconditional
Case optimal design optimal design

2 3.57 1.01
3 6.81 1.05

asymptotic approximations deteriorates,10 and the � nal design can
be affected signi� cantly. In this case, the accuracy of the estimates
can be improved to any desired, by using, for example, importance
sampling techniques.As mentioned, the main difference in this sit-
uation is in the number of structural analyses required during the
optimization process.

The importance of considering the effects of uncertainty in the
system parametersduring the optimizationprocesscan also be illus-
trated from a constraint violationspoint of view. Table 4 shows the
constraint violations at the conditionaloptimal design (case 1), and
unconditional optimal design obtained by the asymptotic approx-
imation method. In Table 4, the exact value of the unconditional
failure probability PF at different optimal designs is computed by
the importance sampling technique (exact value). For example, if
the failure probability is evaluated at the conditional optimal de-
sign, a factor of more than six is obtained in case 3. Thus, the failure
probability of the conditionaloptimal design is more than six times
the value of the failure probability constraint P¤

F , when the uncer-
tainty in the primary system parameters is considered.It is observed
that the constraintviolations at the optimal solution obtainedby the
proposed implementation are small, even for the case with large
uncertainties(case 3). Finally, for completenessthe behavior of the
proposedoptimaldynamic absorber is comparedwith absorbersob-
tainedby conventionaldeterministicapproaches.22 For example, the
optimal tuned mass–damper corresponding to case 3 of the exam-
ple problem has a probability of failure equal to 6:75 £ 10¡2 and a
� nal cost equal to 0:508 £ 105 , when the uncertainty in the primary
system parameters is considered. It is clear that this design is in-
feasible and much more expensive than the design obtained by the
proposed formulation.Therefore, it is recommended that the proce-
dure described in this paper be used instead of deterministic tuning
approaches whenever there are uncertainties in the primary system
properties. These results also indicate, once again, the importance
of considering the effect of uncertaintyexplicitly during the design
process.

Conclusions
A general solution strategy for the reliability-basedoptimization

of uncertain linear structural systems subjected to stochastic exci-
tation has been presented. An asymptotic approximation method
is used to derive estimates for unconditional reliabilities in a nu-
merically ef� cient way. The combinationof the asymptotic method
with approximation concepts allow a considerable reduction in the
number of exact system analysis required to obtain reliability esti-
mates. Numerical results have shown that uncertainty in the model
parameters may cause signi� cant changes in the optimal design of
systems subjected to stochastic loads. In these situations, the errors
or uncertainties in the speci� cation of the system properties should
be properly accounted for during the optimization process. Also,
the accuracy of reliability estimates plays an important role in the
optimizationproblem. Inaccurate reliabilityestimates may produce
infeasible optimal designs, and, therefore, the optimizationprocess
may lead to misleading conclusions regarding the feasibility and
safety of the optimized system. Finally, as the simple yet illustrative
example demonstrates, the proposed methodology provides a gen-
eral framework in which the optimaldesignof structureswith uncer-
tainpropertiessubjectedto stochasticexcitationscan be determined.
The implementation of the methodology to more complex struc-
tural systems is immediate. Thus, the proposed implementation is
expectedto be useful in the optimaldesignof real structuralsystems.
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